Event-driven Programming

Reacting to the user

Outline

= Sequential programming >
= GUI program organization
= Event-driven programming

= Modes

Sequential Programming

= |[n sequential programs, the program is under
control
= The user must synchronize with the program:
= Program tells user it is ready for input
= User enters input and it is processed
= Examples:
= Command-line prompts (DOS, UNIX)
= LISP interpreters

= Shouldn’t the program be required to
synchronize with the user?

Sequential Programming (2)

= Flow of a typical sequential program
= Prompt the user

* Read input from the keyboard

= Parse the input (determine user action)
= Evaluate the result

= Generate output

* Repeat

Example

DemoTranslateEnglishConsole.java

C:\>»java TranslateEnglish

Prompt the user Translate English to Pig Latin

Fnter some text (7z when done)
User input mmmhcllo there
ellohay heretay

Output results —

Sequential Programming (3)

= Advantages
= Architecture is iterative (one step at a time)
= Easy to model (flowcharts, state machines)
= Easy to build

= Limitations
= Can’t implement complex interactions
= Only a small number of features possible

= |nteraction must proceed according to a pre-defined
seguence

= To the rescue... Event-driven programming
= But first...

Outline

= Sequential programming

= GUI program organization >
= Event-driven programming

= Modes

Outline

= Sequential programming
= GUI program organization

= Event-driven programming >
= Modes

Event-driven Programming

* |nstead of the user synchronizing with the
program, the program synchronizes with, or
reacts to, the user

= Communication from user to computer occurs
via events and the code that handles the events

= An event is an action that happens in the
system; e.g.,
= A mouse button pressed or released
= A keyboard key is hit
= A window is moved, resized, closed, etc.

Classes of Events

= Typically, two classes of events:

= User-initiated events
= Events that result directly from a user action
= E.g., mouse click, move mouse, key press

= System-initiated events
= Events created by the system, as it responds to a user action
= E.g., scrolling text, re-drawing a window

= Both classes need to be processed in a Ul

= User-initiated events may generate system-
generated events

Example Program

DemoKeyEvents.java

iﬂ DemoKeyEvents

Enter some text:

KEY TYPED.keyCode=0,keyChar="1"
KEY RELEASED, keyCode=84 keyChar="1"

Example Program

DemoTranslateEnglishGUl.java

Eﬁf’,ﬂ‘ TranslatekE nghshGUI

Translate Enghish to Pig Latin
Enter some text:

hello thers

ellohay heretay

What just Happened?

= Event-driven programming takes us far
beyond sequential programming

= Let’'s examine the example program
= First, a few words on Java events

Java’'s Event Class Hierarchy

EventObject

r

AWTEwvent

T~

Note: this diagram is not
complete. It just shows the
most common event classes

Actionbvent ComponentEvent

N

InputEvent

WindowEvent

i

Used in example

MouseEvent khevEvent | 4+—— program

Java Events

= When a user types characters or uses the
mouse, Java’'s window manager sends a
notification to the program that an event has
occurred

= E.g., when the user presses a key on the
keyboard, a key pressed event occurs

= There are many, many kinds of events (e.g., key
pressed, key released, key typed)

= Many are of no interest
= Some are of great interest

Java Events (2)

To receive notification of events of interest, a
program must install event listener objects

If is not enough to know that an event has
occurred; we also need to know the event
source

E.g., a key was pressed, but in which of several
text fields in the GUI was the key pressed?

So, an event listener must be installed for
particular components that wish to listen for the
event

Let’s look at the code. First, the big picture...

Code Organization (review)

{

'\

import L ‘

public class NameOfProgram

{

Identify packages containing
classes used in the program

public static voic main(String[] args)

—

public class NameOfProgramFrame

|. Construct the GUI frame
2. Give it a title

3. Show it

4. Done!!!!

Suggested naming convention (just
add “Frame” to name of program)

All the work 1s done here

SpPadu INo 1INs
01 PAIJIPOW PUB PAPUIIXD — JWET [

e A[[enmoe s1 sse[d awelj [0 InQ

SUIBIHM SPuUu=s3Xe SUELJUUEL box dFO=2WUEN SSE[O OT [dr a

}
._ o18) TIZS)UTREW DTOA DTIGRIS DTTONG

‘ShIe

WMEIDOIJTOSWEN SSBPTO oTTand

o r O IO0dT

JFrame

Class in the javax.swing package

Sun’s Swing toolkit is Java’s most advanced toolkit

Life before Swing...

= AWT (abstract windowing toolkit)
= AWT used “native” Ul components (unique to local system)
= This creates inconsistencies across platforms

= Ul components of AWT are now obsolete
= AWT still used for drawing, images,etc.
= Swing paints the components itself
= Advantage: code is consistent across platforms
= Disadvantage: results in “big” programs (lots of memory!)

Swing still uses many features of AWT

1 JOUd)SI| TOUDIST [AD Y YY) JO Spoyaw
oy} sjudwd[dwr ssepd (D INO

]
[

IsuajlsTTASY sjusweTdwT
SUPIIN SPpUS1Xs SWRIJURIDOIJI0SURN SSBPTO OTTdgnd

i
(shae []bUuTIZg)UTRPW OTOA OT3E1IS OTTONd

]
[

WRIDOIJIOSUEN SSBTD OoTT7Tdgnd

Tt JIJOdT

‘pasn st duo isnl

Spoylaw Jayi()

USNOY] UDAD “SPOYIOW JOUDISITADY
224y [[e yudwduwn 3sniy

\

JO12N)5UO0) 7\

AN

o3eaTad
oTTand

{} (=3 3usagdsy)padArdAsy pTtoa OTTand

{} (o 3usagdls)y) pesesTagisy pTtoa OTTqnd
{} (=3 usamgiasy)peossa2aglisy pTtoa oTTand

{} ()suexzguexboxgyzosweN sseTo o2TTgnd

23eaTxd
oTTand

(..sanqume,, * Sp[oL).. BYB) S9[qBLIBA 21B[22(] |

[ASY sausSw=2T7dutT

SUEIIN SpPUs1X¥e WURIlJUIRIDROIJI0O<UWUEN SSET2 OTTdr s

Frame Constructor

= Must...

= Create and configure the GUI components

Install ("add”) listeners

= Listeners are not just installed, they must be associated with
particular GUI components

Arrange components in panel(s)
Either

= Get the JFrame’s content pane
= Add panel(s) to content pane

= Or

= Set the outer-most panel to be the JFrame’s content pane

Listeners

= Java’s listener classes are actually
interfaces (not classes)

= What is an interface?

Interfaces vs. Classes

= The definition of a class includes both the design
of the class and its implementation

= Sometimes it is desirable only to design a class,
leaving the implementation for later

= This is accomplished using an interface

= An interface contains only the design of a class

= Includes signatures for its members (methods and
fields)

= No implementation provided

Characteristics of Interfaces

= Do not have instance variables
= Cannot instantiate an object of an interface
* |nclude only abstract methods

= Methods have a signature (i.e., a name, parameters, and
return type)

= Methods do not have an implementation (i.e., no code)

* |nclude only public methods and fields (does not make
sense to define private members if the public members
that could potentially use them are themselves not
implemented)

Listener Example

The signature of our extended JFrame class includes the
clause implements KeyListener

This means our class must include definitions for the
methods of the KeyListener listener

Thus...
public void keyPressed(KeyEvent ke) {}
public void keyReleased(KeyEvent ke) {}
public void keyTyped(KeyEvent ke) {}

Our implementation includes the code we want executed
when a key is pressed, released, and/or typed

Q: What is the difference between “pressed” and
“typed”?

A: Look in the API Spec!

Installing Listeners

= |tis not enough simply to implement the methods of a

listener

= The listener must also be “installed” (aka
“registered”,“added”)

= Furthermore, it must be installed for the component to
which the listener methods are to be associated

= Thus (from our example program)

enterArea.addKeyListener(this);

7

Component to which
the listener methods
are to be associated

An object of a class
that implements the
listener methods

Installing Listeners (2)

= Consider the method addKeyListener

* Fact #1: addKeyListener is a method of the
Component class (check the APl Spec)

* Fact #2: enterArea (from our example) is an
object (instance variable) of the JTextArea
class

= Fact #3: Through inheritance, a JTextArea
object is a Component object

= Conclusion: the addKeyListener method can
be invoked on enterArea

Installing Listeners (3)

= Signature for the addKeyListener method:

public void addKeyListener(KeyListener)

Description:
Adds the specified key listener to receive
key events from this component.

In our example, we used this as the “specified key
listener”

Indeed, the current instance of our extended JFrame
class (“this”) is a key listener because it implements the
key listener methods

Result: when a key pressed event occurs on the

enterArea component, the keyPressed method in our
extended JFrame class will execute!

Let’'s Say That Again...

When a key pressed event

occurs on the enterArea
component, the keyPressed

method Iin our extended

JFrame class will execute!

Processing Events

= Signature for the keyPressed method:
public void keyPressed(KeyEvent ke)

= When our keyPressed method executes, it receives a
KeyEvent object as an argument

= We use the KeyEvent object to
= Determine which key was pressed, using
= getKeyChar, getKeyCode, etc.
= Determine the source of the event, using
= getSource

= “Determine the source of the event” is important if there
IS more than one component registered to receive key
events (not the case in our example program)

Event Sources

= Java’'s event classes are all subclasses of EventObject
(see earlier slide)

= EventObject includes the getSource method:
public Object getSource()

= Didn't need this in our example program, because only
one object (enterArea) was registered to generate key
events

= So, when the keyPressed method executes we know it is
because a key was pressed in enterArea

= But, let’'s say we have two JTextArea components:
enterAreal and enterArea?2 (next slide)

Event Sources (2)

public void keyPressed(KeyEvent ke)
{

if (ke.getSource() == enterArea1l)

{

// code for enterAreal key pressed events

}

else if (ke.getSource() == enterArea2)

{

// code for enterArea2 key pressed events

Adapter Classes

= What is an adapter class?

= A class provided as a convenience in the
Java AP

= An adapter class includes an empty
implementation of the methods in a
listener

= Programmers extend the adapter class
and implement the methods of interest,
while ignoring methods of no interest

WindowAdapter (see Java API)

public abstract class WindowAdapter

implements WindowListener

{
void windowActivated(WindowEvent we) {}
void windowClosed(WindowEvent we) {}
void windowClosing(WindowEvent we) {}
void windowDeactivated(WindowEvent we) {}
void windowDeiconified(WindowEvent we) {}
void windowlconified(WindowEvent we) {}

void windowOpened(WindowEvent we) {}

Using the WindowAdapter Class

= Define an inner class that extends the
WindowAdapter class
= Implement the listener methods of interest
= |[gnore other listener methods

= |n the frame constructor, use the
appropriate “add” method to add an object

of the extended WindowAdapter class
= |n our example program...

this.addWindowLisener(new WindowCloser());

Extending WindowAdapter

public class NameOfProgramFrame extends Jframe

implements KeyListener

{

private class WindowCloser extends WindowAdapter

{
public void windowClosing(WindowEvent we)
{
System.exit(0);
}

Examples of Listeners and Adapters

Listeners (# methods) Adapters
KeyListener (3) KeyAdapter
WindowListener (7) WindowAdapter
MouseListener (5) MouseAdapter
MouseMotionListener (2) MouseMotionAdapter
Mouselnput Listener (7) MouselnputAdapter

ActionListener (1) -
ltemListener (1) -

FocusListener (2) FocusAdapter

(Note: MouselnputListener combines MouseListener and

MouseMotionListener)

Extending Adapters vs. Implementing
Listeners

= | argely a matter personal choice

= Our example program does both
= The KeyListener methods were implemented
= The WindowAdapter class was extended

= Could have done the opposite, i.e.,
= Extend the KeyAdapter class
* Implement the WindowListener methods

= Note: a Java class can implement many
listeners, but it can extend only one class

" éava) does not include multiple inheritance (unlike
++

Pros and Cons

= Using adapter classes
= Advantage
= Only the listener methods needed are defined

= Disadvantage
= A bit complicated to setup

= Need to defined an inner class, then instantiate an object of
the inner class to pass to the appropriate “add” method

= |mplementing listener methods
= Advantage
= A class can implement many different listener interfaces

= Disadvantage

= Must implement all the methods defined in the listener (even
those not used)

Example Program

DemoKeyEvents2.java

E;g Demok eyE vents?

WHAT'S YOUR OPINION ON ANCHONES?

1 TI L,

. KEY_TYPED

: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,
: KEY_TYPED,

Pro: |g|:n:|d an pizza

Con: |t|:u:| salty

oYL Uue—w,

kevCode=0,
keuCode=0,
kevCode=0,
keyCode=0,
kevCode=0,
kevCode=0,
kevCode=0,
kevCode=0,
keuCode=0,
kevCode=0,

ECwL1101
keyChar="a’
keyChar="1"’
keyChar="
keyChar="
keyChar="
keyChar="
keyChar="a’
keyChar="1"
keyChar="
keyChar="

Example Program

DemoMouseEvents.java

J.cllcKLoUNnt=
.clickCount=
.clickCount=
.clickCount=
.clickCount=
.clickCount=
.clickCount=
.clickCount=
.clickCount=

MOUSE_MOVED, (182,89) ,mods=0,clickCount=

MOUSE_MOVED, (186,90) ,mods=0,clickCount=
MOUSE_MOVED, (190,91) ,mods=0,clickCount=

MOUSE_EXITED, (194,92) .mods=0, clickCount=0
ENTERED ., (191,99} . mods=0, cl1ickCount=0

HOUSE

MOUSE HUUED,[191,99),mods=@,click00unt=
MOUSE_MOVED, (190,101) ,mods=0,clickCount=0
HMOUSE_MOVED, (189,101) ,mods=0,clickCount=0
MOUSE_PRESSED, (189,101) ,mods=4,clickCount=1
MOUSE_RELEASED, (189.101) ,mods=4&,clickCount=
MOUSE_CLICKED, (189,101) ,mods=4,clickCount=1

3]
4]
4]
4]
4]
4]
4]
4]
5]
4]
4]
4]

4]

_[O] x]

Example Program

DemoLowLevelEvents.java

DemoHighLevelEvents.java

2D M= E3

| Beep |

Example Program
DemoActionEvents.java

DemoFocusEvents.java

I E;g DemoActionE vents _ |0 J_a

WHATS YOUR OPIMION ON ANCHOIMES?

b
’ Pro: (Good on pizza
'
b

con: [Too fishy!

b I] E T) R F g Wi | o) L"ul"J AL LD R

Pro : Good on p1zza
Con : Too fishy!

Outline

= Sequential programming
= GUI program organization
= Event-driven programming

* Modes >

Coping With Complexity

= How do we cope with complexity?
= Typically, the interface includes modes

= Each mode represents a different state of
the system

= User input must be appropriate for the
current state

= Moded systems require lots of variables to
represent the state of the system

Examples of Modes

= Draw programs
= Use a mode to determine what is being drawn
= E£.g., line mode, rectangle mode, circle mode
= Universal remote controls
= £.g., TV mode, VCR mode
= vi editor on unix
" [nsert mode, command mode

= Sport watches (Yikes! Too many modes!)

Example - MS PowerPoint

Microsoft PowerPoint - [3461-F01-04.ppt]

J File Edit Wiew Insert Format Tools Slide Show Window Help

] 0%,

Jara. .

£ BU =

Five “View modes”

FPros atid Cons

Ih-lngi:liuLE rlaEses
SR ITT '
= Only 1h ol mr rrimr.ﬁ m cdelerm d
* Dlsdavanage
o e o
= Fad In ﬂ_mm-m_lmrﬂ-‘:ﬂ-mﬂ-ﬂdlh
e oo o pooe o e apbsop ol e “edd® Frsld bod

Imnhm-iﬂ.mglr:l.irri mel n-ucl:-
LR TPETLET 0

* Dlddavdrd :I'i‘

= Riod rmplerrenl ill-lrdh:thr-:lnll'-H- e b

Normal

Outline Slide Slide sorter Slide show

Modes in GUIs

= One simple way is to use radio buttons

Example

DemoTranslateEnglishGUI2.java

[=4 TranslateEnglishGUIZ2 (O] =]

Maode = Eewverce Enclich
Enter some text:

hello there

olleh ereht

ode
{_ Pig Latin
(#: Reverse English

Problems With Modes

= Confusing if too many modes (the user has to
remember the salient ones)

= More modes make it easier for users to make
errors (right command, wrong mode)

= Need feedback as to current mode (vi doesn’t!).
= Need a mechanism to switch modes
= Modes do not scale well

= Need a more advanced model to simplify
windows programming

