
Event-driven Programming

Reacting to the user

Outline

� Sequential programming

� GUI program organization

� Event-driven programming

� Modes

Sequential Programming

� In sequential programs, the program is under
control

� The user must synchronize with the program:
� Program tells user it is ready for input

� User enters input and it is processed

� Examples:
� Command-line prompts (DOS, UNIX)

� LISP interpreters

� Shouldn’t the program be required to
synchronize with the user?

Sequential Programming (2)

� Flow of a typical sequential program

� Prompt the user

� Read input from the keyboard

� Parse the input (determine user action)

� Evaluate the result

� Generate output

� Repeat

Example

DemoTranslateEnglishConsole.java

Prompt the user

User input

Output results

Sequential Programming (3)

� Advantages
� Architecture is iterative (one step at a time)

� Easy to model (flowcharts, state machines)

� Easy to build

� Limitations
� Can’t implement complex interactions

� Only a small number of features possible

� Interaction must proceed according to a pre-defined
sequence

� To the rescue… Event-driven programming

� But first…

Outline

� Sequential programming

� GUI program organization

� Event-driven programming

� Modes

Outline

� Sequential programming

� GUI program organization

� Event-driven programming

� Modes

Event-driven Programming

� Instead of the user synchronizing with the
program, the program synchronizes with, or
reacts to, the user

� Communication from user to computer occurs
via events and the code that handles the events

� An event is an action that happens in the
system; e.g.,
� A mouse button pressed or released

� A keyboard key is hit

� A window is moved, resized, closed, etc.

Classes of Events

� Typically, two classes of events:

� User-initiated events

� Events that result directly from a user action

� E.g., mouse click, move mouse, key press

� System-initiated events

� Events created by the system, as it responds to a user action

� E.g., scrolling text, re-drawing a window

� Both classes need to be processed in a UI

� User-initiated events may generate system-

generated events

Example Program

DemoKeyEvents.java

Example Program

DemoTranslateEnglishGUI.java

What just Happened?

� Event-driven programming takes us far
beyond sequential programming

� Let’s examine the example program

� First, a few words on Java events

Java’s Event Class Hierarchy

Java Events

� When a user types characters or uses the
mouse, Java’s window manager sends a
notification to the program that an event has
occurred

� E.g., when the user presses a key on the
keyboard, a key pressed event occurs

� There are many, many kinds of events (e.g., key
pressed, key released, key typed)

� Many are of no interest

� Some are of great interest

Java Events (2)

� To receive notification of events of interest, a
program must install event listener objects

� If is not enough to know that an event has
occurred; we also need to know the event
source

� E.g., a key was pressed, but in which of several
text fields in the GUI was the key pressed?

� So, an event listener must be installed for
particular components that wish to listen for the
event

� Let’s look at the code. First, the big picture…

Code Organization (review)

JFrame

� Class in the javax.swing package

� Sun’s Swing toolkit is Java’s most advanced toolkit

� Life before Swing…
� AWT (abstract windowing toolkit)

� AWT used “native” UI components (unique to local system)

� This creates inconsistencies across platforms

� UI components of AWT are now obsolete

� AWT still used for drawing, images,etc.

� Swing paints the components itself
� Advantage: code is consistent across platforms

� Disadvantage: results in “big” programs (lots of memory!)

� Swing still uses many features of AWT

Frame Constructor

� Must…

� Create and configure the GUI components

� Install (“add”) listeners

� Listeners are not just installed, they must be associated with
particular GUI components

� Arrange components in panel(s)

� Either

� Get the JFrame’s content pane

� Add panel(s) to content pane

� Or

� Set the outer-most panel to be the JFrame’s content pane

Listeners

� Java’s listener classes are actually
interfaces (not classes)

� What is an interface?

Interfaces vs. Classes

� The definition of a class includes both the design

of the class and its implementation

� Sometimes it is desirable only to design a class,

leaving the implementation for later

� This is accomplished using an interface

� An interface contains only the design of a class

� Includes signatures for its members (methods and
fields)

� No implementation provided

Characteristics of Interfaces

� Do not have instance variables

� Cannot instantiate an object of an interface

� Include only abstract methods

� Methods have a signature (i.e., a name, parameters, and

return type)

� Methods do not have an implementation (i.e., no code)

� Include only public methods and fields (does not make
sense to define private members if the public members

that could potentially use them are themselves not

implemented)

Listener Example

� The signature of our extended JFrame class includes the
clause implements KeyListener

� This means our class must include definitions for the
methods of the KeyListener listener

� Thus…
public void keyPressed(KeyEvent ke) {}
public void keyReleased(KeyEvent ke) {}
public void keyTyped(KeyEvent ke) {}

� Our implementation includes the code we want executed
when a key is pressed, released, and/or typed

� Q: What is the difference between “pressed” and
“typed”?
A: Look in the API Spec!

Installing Listeners

� It is not enough simply to implement the methods of a
listener

� The listener must also be “installed” (aka
“registered”,“added”)

� Furthermore, it must be installed for the component to
which the listener methods are to be associated

� Thus (from our example program)

enterArea.addKeyListener(this);

Component to which

the listener methods

are to be associated

An object of a class

that implements the

listener methods

Installing Listeners (2)

� Consider the method addKeyListener
� Fact #1: addKeyListener is a method of the

Component class (check the API Spec)

� Fact #2: enterArea (from our example) is an
object (instance variable) of the JTextArea
class

� Fact #3: Through inheritance, a JTextArea
object is a Component object

� Conclusion: the addKeyListener method can
be invoked on enterArea

Installing Listeners (3)

� Signature for the addKeyListener method:
public void addKeyListener(KeyListener)

� Description:
Adds the specified key listener to receive
key events from this component.

� In our example, we used this as the “specified key
listener”

� Indeed, the current instance of our extended JFrame
class (“this”) is a key listener because it implements the
key listener methods

� Result: when a key pressed event occurs on the
enterArea component, the keyPressed method in our
extended JFrame class will execute!

Let’s Say That Again…

When a key pressed event

occurs on the enterArea

component, the keyPressed

method in our extended

JFrame class will execute!

Processing Events

� Signature for the keyPressed method:
public void keyPressed(KeyEvent ke)

� When our keyPressed method executes, it receives a
KeyEvent object as an argument

� We use the KeyEvent object to
� Determine which key was pressed, using

� getKeyChar, getKeyCode, etc.

� Determine the source of the event, using

� getSource

� “Determine the source of the event” is important if there
is more than one component registered to receive key
events (not the case in our example program)

Event Sources

� Java’s event classes are all subclasses of EventObject
(see earlier slide)

� EventObject includes the getSource method:

public Object getSource()

� Didn’t need this in our example program, because only
one object (enterArea) was registered to generate key
events

� So, when the keyPressed method executes we know it is
because a key was pressed in enterArea

� But, let’s say we have two JTextArea components:
enterArea1 and enterArea2 (next slide)

Event Sources (2)

public void keyPressed(KeyEvent ke)

{

if (ke.getSource() == enterArea1)

{

// code for enterArea1 key pressed events

}

else if (ke.getSource() == enterArea2)

{

// code for enterArea2 key pressed events

}

}

Adapter Classes

� What is an adapter class?

� A class provided as a convenience in the
Java API

� An adapter class includes an empty
implementation of the methods in a
listener

� Programmers extend the adapter class
and implement the methods of interest,
while ignoring methods of no interest

WindowAdapter (see Java API)

public abstract class WindowAdapter

implements WindowListener

{

void windowActivated(WindowEvent we) {}

void windowClosed(WindowEvent we) {}

void windowClosing(WindowEvent we) {}

void windowDeactivated(WindowEvent we) {}

void windowDeiconified(WindowEvent we) {}

void windowIconified(WindowEvent we) {}

void windowOpened(WindowEvent we) {}

}

Using the WindowAdapter Class

� Define an inner class that extends the

WindowAdapter class
� Implement the listener methods of interest

� Ignore other listener methods

� In the frame constructor, use the
appropriate “add” method to add an object
of the extended WindowAdapter class

� In our example program…

this.addWindowLisener(new WindowCloser());

Extending WindowAdapter
...

public class NameOfProgramFrame extends Jframe

implements KeyListener

{

...

private class WindowCloser extends WindowAdapter

{

public void windowClosing(WindowEvent we)

{

System.exit(0);

}

}

}

Examples of Listeners and Adapters

Listeners (# methods) Adapters

KeyListener (3) KeyAdapter

WindowListener (7) WindowAdapter

MouseListener (5) MouseAdapter

MouseMotionListener (2) MouseMotionAdapter

MouseInput Listener (7) MouseInputAdapter

ActionListener (1) -

ItemListener (1) -

FocusListener (2) FocusAdapter

(Note: MouseInputListener combines MouseListener and

MouseMotionListener)

Extending Adapters vs. Implementing

Listeners

� Largely a matter personal choice

� Our example program does both
� The KeyListener methods were implemented

� The WindowAdapter class was extended

� Could have done the opposite, i.e.,
� Extend the KeyAdapter class

� Implement the WindowListener methods

� Note: a Java class can implement many
listeners, but it can extend only one class
� Java does not include multiple inheritance (unlike

C++)

Pros and Cons

� Using adapter classes
� Advantage

� Only the listener methods needed are defined

� Disadvantage
� A bit complicated to setup
� Need to defined an inner class, then instantiate an object of

the inner class to pass to the appropriate “add” method

� Implementing listener methods
� Advantage

� A class can implement many different listener interfaces

� Disadvantage
� Must implement all the methods defined in the listener (even

those not used)

Example Program

DemoKeyEvents2.java

Example Program

DemoMouseEvents.java

Example Program

DemoLowLevelEvents.java

DemoHighLevelEvents.java

Example Program
DemoActionEvents.java

DemoFocusEvents.java

Outline

� Sequential programming

� GUI program organization

� Event-driven programming

� Modes

Coping With Complexity

� How do we cope with complexity?

� Typically, the interface includes modes

� Each mode represents a different state of
the system

� User input must be appropriate for the
current state

� Moded systems require lots of variables to
represent the state of the system

Examples of Modes

� Draw programs

� Use a mode to determine what is being drawn

� E.g., line mode, rectangle mode, circle mode

� Universal remote controls

� E.g., TV mode, VCR mode

� vi editor on unix

� Insert mode, command mode

� Sport watches (Yikes! Too many modes!)

Example - MS PowerPoint

Five “View modes”

Normal Outline Slide Slide sorter Slide show

Modes in GUIs

� One simple way is to use radio buttons

Example

DemoTranslateEnglishGUI2.java

Problems With Modes

� Confusing if too many modes (the user has to

remember the salient ones)

� More modes make it easier for users to make

errors (right command, wrong mode)

� Need feedback as to current mode (vi doesn’t!).

� Need a mechanism to switch modes

� Modes do not scale well

� Need a more advanced model to simplify

windows programming

